ALGORITHM \& FLOWCHART MANUAL for STUDENTS Part (1)

Algorithm in Programming:
In programming, algorithm is a set of well-defined instructions in sequence to solve the problem.

HOW TO WRITE ALGORITHMS:

Step 1 Define your algorithms input: Many algorithms take in data to be processed, e.g. to calculate the area of rectangle input may be the rectangle height and rectangle width.
Step 2 Define the variables: Algorithm's variables allow you to use it for more than one place. We can define two variables for rectangle height and rectangle width as HEIGHT and WIDTH (or H \& W). We should use meaningful variable name e.g. instead of using $\mathrm{H} \& \mathrm{~W}$ use HEIGHT and WIDTH as variable name.
Step 3 Outline the algorithm's operations: Use input variable for computation purpose, e.g. to find area of rectangle multiply the HEIGHT and WIDTH variable and store the value in new variable (say) AREA. An algorithm's operations can take the form of multiple steps and even branch, depending on the value of the input variables.
Step 4 Output the results of your algorithm's operations: In case of area of rectangle output will be the value stored in variable AREA. if the input variables described a rectangle with a HEIGHT of 2 and a WIDTH of 3 , the algorithm would output the value of 6 .

Flowchart:

Flowchart is diagrammatic /Graphical representation of sequence of steps to solve a problem. To draw a flowchart following standard symbols are use

Symbol Purpose
 Description

Flow line

Used to indicate the flow of logic by connecting symbols.

Symbol Purpose

Terminal(Stop/Start)

Input/Output

Processing

Decision

On-page Connector
\square
\square Predefined
Process/Function

Description

Used to represent start and end of flowchart.

Used for input and output operation.

Used for airthmetic operations and data-manipulations.

Used to represent the operation in which there are two alternatives, true and false.

Used to join different flowline

Used to connect flowchart portion on different page.

Used to represent a group of statements performing one processing task.

Example (1)

Write the Algorithm and Draw a flowchart to add two numbers?

Algorithm

Step-1 Start
Step-2 Input first number say A
Step-3 Input second number say B
Step-4 SUM = A + B
Step-5 Display SUM
Step-6 Stop
Or

Algorithm

Step-1 Start
Step-2 Input two numbers say A \& B
Step-3 SUM = A + B
Step-4 Display SUM

Step-5 Stop

Example (2)

Convert temperature from Celsius to Fahrenheit

C : temperature in Celsius
F : temperature Fahrenheit

Algorithm

Step-1 Start
Step-2 Input temperature in Celsius say C
Step-3 F = $(9.0 / 5.0 \times C)+32$
Step-4 Display Temperature in Fahrenheit F Step-5 Stop

Example (3)

Find Area and Perimeter of Square:
L : Side Length of Square
AREA : Area of Square
PERIMETER : Perimeter of Square

Algorithm

Step-1 Start

Step-2 Input Side Length of Square say L

Step-3 Area $=\mathrm{L} \times \mathrm{L}$
Step-4 PERIMETER $=4 \times$ L

Step-5 Display AREA, PERIMETER

Step-6 Stop

Example (4)

Find Area and Perimeter of Rectangle:
L : Length of Rectangle طول السستطيل
B : Breadth of Rectangle عرض الستطيل
AREA : Area of Rectangle
PERIMETER : Perimeter of Rectangle

Algorithm

Step-1 Start
Step-2 Input Side Length \& Breadth say L, B
Step-3 Area $=\mathrm{L} \times \mathrm{B}$
Step-4 PERIMETER $=2 \times(L+B)$
Step-5 Display AREA, PERIMETER
Step-6 Stop

Example (5)

Find Area and Perimeter of Circle:

R : Radius of Circle
AREA: Area of Circle
PERIMETER : Perimeter of Circle

Algorithm

Step-1 Start
Step-2 Input Radius of Circle say R
Step-3 Area $=22.0 / 7.0 \times R \times R$ (or) $(3.14 \times R \times R)$
Step-4 PERIMETER $=2 \times 22.0 / 7.0 \times R(2 \times 3.14 \times R)$
Step-5 Display AREA, PERIMETER
Step-6 Stop

Example (6)

Find Area and Perimeter of Triangle:

A : First Side of Triangle
B : Second Side of Triangle
C : Third Side of Triangle
AREA : Area of Triangle
PERIMETER : Perimeter of Triangle

Algorithm

Step-1 Start
Step-2 Input Sides of Triangle A,B,C
Step-3 S=(A + B + C)/ 2.0
Step-4 AREA $=$ SQRT $(S \times(S-A) \times(S-B) \times(S-C))$
Step-5 PERIMETER = A + B + C
Step-6 Display AREA, PERIMETER
Step-7 Stop

Example (7)

Algorithm \& Flowchart to Swap Two Numbers using Temporary Variable :

Algorithm
Step-1 Start
Step-2 Input Two Numbers Say NUM1,NUM2
Step-3 Display Before Swap Values NUM1, NUM2
Step-4 TEMP = NUM1
Step-5 NUM1 = NUM2
Step-6 NUM2 = TEMP
Step-7 Display After Swap Values NUM1,NUM
Step-8 Stop

Algorithm \& Flowchart to Swap Two Numbers without using temporary variable:
Algorithm
Step-1 Start
Step-2 Input Two Numbers Say A,B
Step-3 Display Before Swap Values A, B
Step-4 A = A + B
Step-5 B = A - B
Step-6 A = A - B
Step-7 Display After Swap Values A, B
Step-8 Stop

Conditional Statements : if, else, switch

Conditional statements help you to make a decision based on certain conditions. These conditions are specified by a set of conditional statements having Boolean expressions which are evaluated to a Boolean value true or false.

1. if statement
2. If-Else statement
3. Nested If-else statement
4. If-Else If
5. Switch statement

If statement

The single if statement in is used to execute the code if a condition is true. It is also called one-way selection statement.

Syntax

```
If(condition)Then
    'statement(s) 'will execute if the condition is true
End If
```


How "if" statement works

- If the expression is evaluated to nonzero (true) then if block statement(s) are executed.
- If the expression is evaluated to zero (false) then Control passes to the next statement following it.

If-else statement

The if-else statement is used to execute the code if condition is true or false. It is also called two-way selection statement.

Syntax

```
If(condition)Then
    'statement(s) will execute if the condition is true
Else
    'statement(s) will execute if the condition is false
End If
```


How "if..else" statement works..

- If the expression is evaluated to nonzero (true) then if block statement(s) are executed.
- If the expression is evaluated to zero (false) then else block statement(s) are executed.

Nested If statement

The nested if statement is used when a program requires more than one test expression. It is also called a multi-way selection statement. When a series of the decision are involved in a statement, we use if else statement in nested form

Syntax

```
if (condition1) {
    // Executes when condition1 is true
    if (condition2) {
        // Executes when condition2 is true
    }
}
```


If..else If

The if-else-if statement is used to execute one code from multiple conditions. It is also called multipath decision statement. It is a chain of if..else statements in which each if statement is associated with else if statement and last would be an else statement.

Syntax

```
if(condition_1) {
    // this block will execute
    // when condition_1 is true
} else if(condition_2) {
    // this block will execute
    // when condition2 is true
}
```

 else \{
 // this block will execute when none
 // of the condition is true
 \}
\}

Example (8)

Algorithm \& Flowchart to find the smallest of two numbers:

Algorithm

Step-1 Start
Step-2 Input two numbers say
NUM1,NUM2
Step-3 IF NUM1 < NUM2 THEN
print smallest is NUM1
ELSE
print smallest is NUM2
ENDIF
Step-4 Stop

Algorithm \& Flowchart to find the largest of two numbers:

Algorithm

Step-1 Start
Step-2 Input two numbers say
NUM1,NUM2
Step-3 IF NUM1 > NUM2 THEN
print largest is NUM1
ELSE
print largest is NUM2
ENDIF
Step-4 Stop

Example (9)

Algorithm \& Flowchart to find the largest of three numbers:
Step 1: Input N1, N2, N3
Step 2: if (N1>N2) then
if ($\mathrm{N} 1>\mathrm{N} 3$) then
MAX N1 [N1>N2, N1>N3]
else
MAX N3 [N3>N1>N2]
endif
else
if (N2>N3) then
MAX N2 [N2>N1, N2>N3]
else
MAX N3 [N3>N2>N1]
endif
endif
Step 3: Print "The largest number is", MAX

Step4: Stop
 Another method

Step-1 Start

Step-2 Read three numbers say num1,num2, num3
Step-3 if (num1>num2) and (num1>num3) then
Print num1 is largest
Else if (num2>num1) and (num2>num3) then
Print num2 is largest

Else

Print num3 is largest
End if
End if
Step-4 Stop

Tasks

1. Find Even numbers between 1 to 50

Algorithm
Step-1 Start
Step-2 \quad I = 1
Step-3 IF (I >50) THEN
GO TO Step-7
ENDIF
Step-4 IF $((1 \% 2)=0)$ THEN
Display I
ENDIF
Step-5 $\quad \mathrm{I}=\mathrm{I}+1$

2. write algorithm and drow flowchart to find the result of equation:

$$
f(x)=\left\{\begin{aligned}
-x, & x<0 \\
x, & x \geq 0
\end{aligned}\right.
$$

Step1: Start
Step2: Read/input x
Step3: if X greater than or equal zero then

$$
F=X
$$

Else

$$
F=-X
$$

End if
Step4: Print F
Step5: End

3. Write and algorithm and draw a flowchart to:

a) Read an employee name (NAME), overtime hours worked (OVERTIME), hours absent (ABSENT)
b) Determine the bonus payment (PAYMENT).

Bonus Schedule	
OVERTIME $-(2 / 3)^{*}$ ABSENT	Bonus Paid
>40 hours	$\$ 50$
>30 but ≤ 40 hours	$\$ 40$
>20 but ≤ 30 hours	$\$ 30$
>10 but ≤ 20 hours	$\$ 20$
≤ 10 hours	$\$ 10$

Step 1: Input NAME, OVERTIME, ABSENT
Step 2: if (OVERTIME-(2/3)*ABSENT > 40) then
PAYMENT 50
else if (OVERTIME-(2/3)*ABSENT > 30) then
PAYMENT 40
else if (OVERTIME-(2/3)*ABSENT > 20) then
PAYMENT 30
else if (OVERTIME-(2/3)*ABSENT > 10) then
PAYMENT 20
else
PAYMENT 10
End if
Step 3: Print "Bonus for", NAME "is \$", PAYMENT
Step 4: Stop

Example 10

Write an algorithm to determine a student's final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.

Algorithm

Step 1: Input M1, M2, M3, M4
Step 2: GRADE $=(\mathrm{M} 1+\mathrm{M} 2+\mathrm{M} 3+\mathrm{M} 4) / 4$
Step 3: if (GRADE < 60) then
Print "FAIL"
else
Print "PASS"
Endif
Step 4: Stop

Example 11

Write an algorithm that accept an integer number from the user, in case of the number is Positive, check and print out whether it is Even or Odd number.

Algorithm

Step 1: Read number from user say N
Step 2: If ($\mathrm{N}>0$) then If ($\mathrm{N} \% 2==0$) then

Print "Number is Even"
else
Print "Number is Odd"
End if
End if
Step 4: Stop

Example 12

Write An Algorithm That Read Student's Mark As Integer Then Print The Equivalent Grade Depends On The Following Table:

$0 \leq$ Mark <60	$60 \leq$ Mark <65	$65 \leq$ Mark <75	$75 \leq$ Mark <85	$85 \leq$ Mark ≤ 100
Fail	OK	Good	Very Good	Excellent

Algorithm
Step 1: Start
Step 2: Read mark
Step 3: If (mark < 60) then
Print "Fail"
Else If (mark < 65) then
Print "Accept"
Else If (mark < 75) then
Print "Good"
Else If (mark < 85) then
Print " Very Good"
Else If (mark <=100) then Print "Excellent"
Else
Print "Invalid Mark! Try again!"
Step 4: stop

Example 13

Write an algorithm and draw a flowchart that will calculate the roots of a quadratic equation:

$$
a x^{2}+b x+c=0
$$

Where:

$$
\begin{gathered}
\mathbf{d}=\sqrt{b^{2}-4 a c}, \text { and the roots are: } \\
\mathbf{x 1}=\frac{(-b+d)}{2 a} \text { and } \mathbf{x} \mathbf{2}=\frac{(-b-d)}{2 a}
\end{gathered}
$$

Algorithm:

Step 1: Input a, b, c
Step 2: $d=\operatorname{sqrt}(b * b-4$ * a * $)$

Step 3: x1 = (-b + d) / (2 * a)
Step 4: $x 2=(-b-d) /(2$ * $a)$
Step 5: Print x1, x2
Step 6: Stop

Task

لكتنير (Var)

Pseudo code

Variable A, B, C, D, Sum : integer
Variable Var: real
Begin
$\operatorname{Read}(A, B, C, D)$
Sum $=\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D}$
If (Sum $\operatorname{Mod} 2=0)$ then

$$
\text { Var }=\text { Sum ** } 0.5
$$

Else

$$
\mathrm{Var}=\operatorname{Sum} * * 2
$$

suw chas:

End if
Write (Sum, Var)
End

Switch Statement

Switch statement acts as a substitute for a long if-else-if that is used to test a list of cases. A switch statement contains one or more case labels which are tested against the switch expression. When the expression match to a case then the associated statements with that case would be executed.

Syntax

Switch (expression)
\{

```
case value1:
            //Statements
        break;
case value 2:
    //Statements
        break;
case value 3:
        //Statements
case value n:
    //Statements
    break;
Default:
    //Statements
}
//Statements
\}
```


[^0]
Example 14

Write algorithm which read the numbers from 1 to 7 and display their correspondence day of week.

Step 1: Start
Step2: read integer number say (day)
Step3: Switch (day)
\{
Case 1 :
Print "Saturday" break;
Case 2 :
Print "Sunday" break;
Case 3 :
Print "Monday" break;
Case 4 :
Print "Tuesday" break;
Case 5:
Print "Wednesday" break;
Case 6 :
Print "Thursday" break;
Case 7 :
Print "Friday" break;
Default :
Print "Invalid day" break;
\}
Step4: stop

Example 15

Algorithm to calculate the area of A rectangle or circle or triangle by taking the user's choice.

Step 1: Start
Step 2: Initialize variables
Step 3: Take input for choice and then for area variables from the user
Step 4: Case 1: $\mathrm{ac}=3.14^{*} r^{\star} r$
break;
Case 2: ar = length*width break;

Case 3: at $=0.5^{*}$ base*height break;
Step 5: Display output according to case
Step 6: Stop

Example 16

Write algorithm that read a word English vocabulary from user as string and print its definition, at case of word not found print "The vocabulary is not found in the database".
Note: solve using if statement then try to solve using select case statement

word vocabulary	Definition
Pillow	Is soft or hard thing that you put your head on it.
Pillowcase	Is a cover for the pillow
Dresser	Is a piece of furniture that you put your clothes into

Algorithm
Step 1: Start
Step 2: Initialize variable (word) as string
Step 2: Read word
Step 3: if (word == "Pillow")
Print (Is soft or hard thing that you put your head on it)
else if (word == "Pillowcase")
Print (Is a cover for the pillow)
else if (word == "Dresser")
Print (Is a piece of furniture that you put your clothes into)
else
Print (The vocabulary is not found in the database)
Step 4: stop

Problem solving with loops

A loop statement allows us to execute a statement or group of statements multiple times and following is the general form of a loop statement in most of the programming languages.

Types of Loop Structures

1. Automatic Counter Looping (ACL)

> For-Counter Loop
2. Conditioned Looping (CL)
> While Loop
> Do-While Loop
> Repeat-Until Loop

For loop

- A FOR loop is a loop that repeats a specified number of times. The loop uses a counter to tell it how many times to run the same sequence of activities.

- Syntax

LOOP: COUNTER = BEGIN TO END STEP S
INSTRUCTION
INSTRUCTION

LOOP-END: COUNTE

While Loop

This type of loop tells the computer that while the condition is TRUE, repeat all instructions between the WHILE and the WHILE END.

Syntax:

WHILE condition Instructions
END-WHILE
The statement is executed as long as the condition is True. The loop terminates when the condition is False.

Repeat/Until Loop

- This type of loop tells the computer to repeat the set of instructions between the REPEAT and until, until a condition is TRUE.

- Syntax

Repeat
Instruction
Instruction

Until <condition>

- Like a while loop, a do-while loop is a loop that repeats while some condition is satisfied.
- Unlike a while loop, a do-while loop tests its condition at the end of the loop.
- This means that its sequence of activities always runs at least once.

- Syntax

Do
Statement
WHILE (condition)
Repeat until loop, continues to run until the control expression is true (and then terminates).

Do while loop runs while the control expression is true (and terminates once the expression becomes false).

Example 17

Create the algorithm and the flowchart to Print Hello World 10 times.
Algorithm (using While loop)
Step 1: Start
Step 2: Initialize count $=0$
Step 3: While (count < 10)
Print (Hello World)
Increment count by 1
While- end
Step 4: stop

Flowchart

Algorithm (using do- while)
Step 1: Initialize count = 0
Step 2: do
Print (Hello World)

$$
\text { count }=\text { count }+1
$$

While (count < 10)
Step 3: stop

Step 3: stop

Algorithm（using For loop）

Step 1：Loop：（count＝ 0 to 9 ）
Step 2 ：Print（Hello World）
Step 3：Loop－end
Step 4：Stop

Flowchart

Example 18

$$
\begin{aligned}
& \text { : } \\
& \text { أوجد اللnخطط الانسيابي (Flowchart) بالإضـافة إلى كود الفشفرة (Pseudo code) لخورالرم } \\
& \text { 层 } \\
& \text { 机 }
\end{aligned}
$$

Rseude code

Variable C，Sum＝0，Score：integer
Variable Ave ：real
Begin
Loop：$(\mathrm{C}=1$ to 5$)$
Read（Score）
Sum $=$ Sum + Score
Loop－end：C
Ave $=$ Surn $/ C$
Write（Sum，Ave）
End
Resulf of the algorithm

Input ：Score	50	70	90	60	80
Outpust ：Sum，Ave	350				70

Task

Find Even numbers between 1 to 50.

Algorithm

Step-1 Start
Step-2 $\quad I=1$
Step-3 IF ($1>50$) THEN GO TO Step-7 ENDIF
Step-4 IF $((1 \% 2)=0)$ THEN Display 1 ENDIF
Step-5 $\quad \mathrm{I}=\mathrm{I}+1$
Step-6 GO TO Step--3
Step-7 Stop

Task

حصاب المعل التر اكهم GPA للطالب بتَم بلالتلم:

ابذا كان التشّسير (grade = B) زالا GPA 0.7 بستدلر 0.7
إذا كان التُّاير (grade=C) زاد

لوجد اللشطط الانسيلبي (flowchart) بالاضضانة اللمى كود الشفرة (Pseudo code) لخورلزم

Previlo corle

Variable GPA-2.5 : real
Variable grade: charabcter
Bregin
Read (grade)
Switch (grade)
case: "A."

$$
G P A=G P A+0.9
$$

Break
case: "B"
$G P A=G P A+0.7$
Break
caser: ${ }^{4} \mathrm{C}$ "
GPA $-G P A+0.5$
Break
case: "F'
$G P A=G P A+0.0$
Break
Default
Wirite ("You Typed Wrong Girade ")
Exit
Switch-end
Write (grade, GP/A)
End

Example 19

بيستخدلم Pseudo code While structure Wh لثر لرزم يثقو بطباعة الأعدالد من 1 المى
Variable Num=1: integer
Begin
While (Num $<=100$)
Write (Num)
Num $=N u m+1$
While-end
End

Example 20

Algorithm \& Flowchart to find Odd numbers between 1 to 100.

ALGORITHM:

Step 1: Start
Step 2: Declare variable N as integer type
Step 3: Set $\mathrm{N}=1$
Step 4: while ($\mathrm{N}<=100$)
Step 5: \quad if $(\mathrm{N} \% 2!=0)$ then
Step 6: print N
Step 7: End if
Step 8: $\quad \mathrm{N}=\mathrm{N}+1$
Step 9: End while

Step 10: Stop

Example 21

Algorithm \& Flowchart to find sum of series 1+2+3+.....+N
Algorithm
Step-1 Start
Step-2 Input Value of N
Step-3 Initialize SUM =0, $i=1$
Step-4 while ($\mathrm{i}<=\mathrm{N}$)
Step-5 SUM = SUM +i
Step-6 $\quad i=i+1$
Step-7 End while
Step-8 Display value of SUM
Step-9 Stop

Example 22

Algorithm \& Flowchart to find Factorial of number $n(n!=1 \times 2 \times 3 x \ldots n)$
Algorithm (Using While loop)
Step-1 Start
Step-2 Read number N
Step-3 FACT = $1, i=1$
Step-4 WHILE ($\mathrm{i}<=\mathrm{N}$)

$$
\text { FACT }=\text { FACT *i }
$$

$$
i=i+1
$$

End While
Step-8 Display FACT
Step-9 Stop

Using For Loop

Pseudo code

Variable $\mathrm{C}, \mathrm{F}=1, \mathrm{~N}$: integer
Begin
Read (N)
Loop: $(\mathrm{C}=1$ to N)

$$
\mathrm{F}=\mathrm{F} * \mathrm{C}
$$

Loop-end: C
Write (F)
End

Example 23

Write an algorithm and draw a Flowchart to read in two numbers, x and n , and then compute the sum of this geometric progression:

$$
1+X+x^{2}+x^{3}+\ldots+x^{n}
$$

For example: if \mathbf{n} is 3 and x is 5 , then the program computes $1+5+25+125$.

Algorithm
Step-1 Start
Step-2 Read numbers N, X
Step-3 SUM $=1$, TERM $=1, i=1$
Step-4 WHILE ($\mathrm{i}<=\mathrm{N}$)

> TERM = TERM * x
> SUM $=$ SUM + TERM
> $i=i+1$

End While
Step-8 Display SUM
Step-9 Stop

Example 24

Algorithm \& Flowchart to print multiplication Table of a number
Algorithm (Using While loop)
Step-1 Start
Step-2 Input Value of NUM
Step-3 $\mathrm{i}=1$
Step-4 While ($\mathrm{i}<=12$)
PROD = NUM * i
Write i "x" NUM "=" PROD $i=i+1$
End While
Step-5 Stop

Algorithm (Using For loop)
Step-1 Start
Step-2 Input Value of NUM
Step-3 For (i=1 to 12)

$$
\text { PROD }=N U M * i
$$

Write i "x" NUM "=" PROD

> End For

Step-4 Stop

Algorithm \& Flowchart to print multiplication Table (using nested loop)

Pseudo code

Variable C1, C2, Prod : integer
Begin
Loop:($\mathrm{Cl}=1$ to 10)
Loop: $(\mathrm{C} 2=\mathrm{C} 1$ to 10$)$
Prod $=\mathrm{C} 1 * \mathrm{C} 2$

Write $\left(\mathrm{C} 1,{ }^{\prime *}, \mathrm{C} 2,{ }^{\prime}=\right.$ ', Prod $)$
Loop-end:C2
Loop-end:Cl
End

Example 25

Algorithm \& Flowchart to generate Fibonacci series $\mathbf{0 , 1 , 1 , 2 , 3 , 5 . . . , n}$
Algorithm
Step-1 Start
Step-2 Initialize the variables, next, $A=0, B=1$, Count $=2$
Step-2 Read number N
Step-3 Print (A, B)
Step-4 While (Count < N)
next $=A+B$
print (next)
$A=B$
$B=n e x t$
Count $=$ Count +1
End While
Step-5 Stop

[^0]: Switch Statement

